10.5. DEFECT ANALYSIS AND PREVENTION 451

10.5.2 Perform Causal Analysis

The Pareto chart helps identify the main types of defects that have been found in the
project so far, and are likely to be found in the rest of the project unless some action is
taken. These can be treated as “effects” which we would like to minimize in future. For
reducing these defects, we have to find the main causes for these defects and then try
to eliminate these causes. Cause-effect (CE) diagram is a technique that can be used to
determine the causes of the observed effects [119, 139]. The understanding of the causes
helps identify solutions to eliminate them.

The building of a CE diagram starts with identifying an effect whose causes we
wish to understand. In the example above, the effect could be “too many GUI er-
rors.” To identify the causes, first some major categories of causes are established. For
manufacturing, these major causes often are manpower, machines, methods, materials,
measurement, and environment. One possible standard set of major causes in software
can be process, people, technology, and training (this is used in an organization [97]).
With the effect and major causes, the main structure of the diagram is made—effect as
a box on the right connected by a straight horizontal line, and an angular line for each
major cause connecting to the main line.

For analyzing the causes, the key is to continuously ask the question “Why does
this cause produce this effect?” This is done for each of the major causes. The answers
to these questions become the sub-causes and are represented as short horizontal lines
joining the line for the major cause. Then the same question is asked for the causes
identified. This “Why-Why-Why” process is repeated till all the root causes have been
identified, i.e. the causes for which asking a “Why” does not make sense. When all the
causes are marked in the diagram, the final picture looks like a fish-bone structure and
hence the cause-effect diagram is also called the fish-bone diagram, or Ishikawa diagram
after the name of its inventor.

The main steps in drawing a cause-effect diagram are as follows[139]:

1. Clearly define the probleni (i.e.. the effect) that is to be studied. For defect

prevention. it typically will be ~“too many defects of tvpe X7,
2. Draw an arrow from left to right with a box containing the effect drawn at the
head. This 13 the backbone of this diagram.

3. Decide the major categories of causes. These could be the standard categorics or
some variation of it to suit the problen.

4. Write these major categories in boxes and connect them with diagonal arrows to
the backbone. These form the major bones of the diagram.

5. Brainstorm for the sub-canses to these major canses by asking repeatedly. for each
major cause. the gquestion. “Whyv does this major cause produce the effect?”

452 CHAPTER 10. TESTING

6. Add the sub-causes to the diagram clustered around the bone of the major canse.
Further sub-divide these canses. if necessary. Stop when no worthwhile answer to
!
the question can be found.

Process Technology
Unclear/incorrect

Standards/ specifications

checklists not

not documented well Technical

problems Logic/UV/
standard
defects
Lack of

Oversight

technical skills

Lack of
training

Standards not
folliowed

Training People

Figure 10.13: Cause-effect diagram for the example.

Once the fishbone diagram is finished, we have identified all the causes for the effect
under study. However, most likely the initial fishbone diagram will have too many
causes. Clearly, some of the causes have a larger impact than others. Hence, before
completing the root cause analysis, the top few causes are identified. This is done largely
through discussion. For defect prevention, this whole exercise can be done for the top
one or two categories of defects found in the Pareto analysis.

The fish bone diagram for this example is shown in Figure 10 . In this analysis,
causes of all the three major types of defects were discussed together. Hence, our effect
is “too many logic/GUI/standards defects.” When we asked the question “why do peo-
ple and training cause too many logic or GUI or standards defects,” some of the (almost
obvious) reasons came out—lack of training, oversight, lack of technical skills. Similarly,
when we asked the question “why do processes cause too many logic/GUI/standards
defects,” the answer came out as “standards not comprehensively documented” and
“people not aware of standards.” Similarly, for technology the causes were “unclear
specifications” and “technical problems of tools.” The brainstorming sessions for the
causal analysis, of course, threw up many more causes. But after listing all the sug-
gestions made during the meeting, they were prioritized. Prioritization can be done
easily by considering each of the defects and identifying the causes for that defect. The
causes that show up most frequently are the ones that are high priority, and are shown
in Figure 10.

10.5. DEFECT ANALYSIS AND PREVENTION 453

10.5.3 Develop and Implement Solutions

Root Cause Preventive Actions .

Standards not Do a group reading of the standards.

followed Ensure that standards are 'followed in mock
projects.

Oversight Effective self review

Rigorous code reviews

Unclear /Incorrect Conduct specification reviews
Specifications
Lack of training Every new entrant will do a mock project.

A detailed specification and test plan will be
made for the same.

Lack of techinical Develop tutorials for the key technologies.
Skills Have members do mock projects.

Table 10.4: Root causes and proposed solutions.

So far we have discussed how to identify the types of defects that are occurring
frequently, and what are the root causes for the major defect categories. But no action
has yet been taken to reduce the occurrence of defects. This is done in this phase.

Once the root causes are known, then the next natural step is to think of what can
be done to attack the root causes, such that their manifestation in the form of defects is
lessened. Some common prevention actions are are building /improving checklists, train-
ing programs, reviews, use of some specific tool. The solutions are developed through
a brainstorming session. The cause-effect analysis also is done through brainstorming.
Hence, frequently, these two steps might be done in the same session. There is one
brainstorming session in which the cause-effect analysis is done and the preventive so-
lutions are identified. The root causes and the preventive actions for the example are
also shown in Table 10. The preventive actions proposed are self-explanatory.

The preventive solutions are action items which someone has to perform. Hence,
the implementation of the solutions is the key. Unless the solutions are implemented,
they are of no use at all. One way to ensure this is to treat these as project activities,
assign them to project members, and include them in the detailed project schedule.

454 CHAPTER 10. TESTING

An important part of implementing the solutions is to see if it is having the desired
effect, that is, reducing the injection of defects and thereby reducing the rework effort
expended in removing the defects. Analysis of defects some time after the solutions
have been implemented can given some insight into this question. Generally, the next
analysis for defect prevention can be used for this purpose. Besides tracking the impact,
such follow-up analysis has tremendous reinforcing value—seeing the benefits convinces
people like nothing else. Hence, besides implementation, the impact of implementation
should also be analyzed.

10.6 Metrics—Reliability Estimation

After the testing is done and the software is delivered, the development is considered
over. It will clearly be very desirable to know, in quantifiable terms, the reliability of the
software being delivered. As testing directly impacts the reliability and most reliability
models use data obtained during testing to predict reliability, reliability estimation is
the main product metrics of interest at the end of the testing phase. We will focus our
attention on this metric in this section.

Before we discuss the reliability modeling and estimation, let us briefly discuss a few
main metrics that can be used for process evaluation at the end of the project.

Once the project is finished, one can look at the overall productivity achieved by the
programmers during the project. As discussed earlier, productivity can be measured as
lines of code (or function points) per person-month.

Another process metric of interest is defect removal efficiency. The defect removal
efficiency of a defect removing process is defined as the percentage reduction of the
defects that are present before the start of the process [104]. The cumulative defect
removal efficiency of a series of defect removal processes is the percentage of defects that
have been removed by this series. The defect removal efficiency cannot be determined
exactly as the defects remaining in the system are not known. However, at the end of
testing, as most defects have been uncovered, removal efficiencies can be estimated.

Let us now return to our main topic—software reliability modeling and assessment.
Reliability of software often depends considerably on the quality of testing. Hence, by
assessing reliability we can also judge the quality of testing. Alternatively, reliability
estimation can be used to decide whether enough testing has been done. Hence, besides
characterizing an important quality property of the product being delivered, reliability
estimation has a direct role in project management—the reliability models being used
by the project manager to decide when to stop testing.

Many models have been proposed for software reliability assessment, and a survey
of many of the models is given in [71, 120, 61]. A discussion of the assumptions and
consequent limitations on the models is given in [71]. Here we will discuss Musa’s basic
model, as it is one of the simplest models. The discussion of the model is based largely

10.6. METRICS—RELIABILITY ESTIMATION 455

on the book [120]. It should, however, be pointed out that reliability models are not in
widespread use and are used mostly in special situations. :

10.6.1 Basic Concepts and Definitions

Reliability of a product specifies the probability of failure-free operation of that product
for a given time duration. As we discussed earlier in this chapter, unreliability of any
product comes due to failures or presence of faults in the system. As software does not
“wear out” or “age” as a mechanical or an electronic system does, the unreliability of
software is primarily due to bugs or design faults in the software. It is widely believed
that with the current level of technology it is impossible to detect and remove all the
faults in a large software system (particularly before delivery). Consequently, a software
system is expected to have some faults in it.

Reliability is a probabilistic measure that assumes that the occurrence of failure of
software is a random phenomenon. That is, if we define the life of a software system
as a variable, this is a random variable that may assume different values in different
invocations of the software. This randomness of the failure occurrences is necessary for
reliability modeling. Here, by randomness all that is meant is that the failure cannot
be predicted accurately. This assumption will generally hold for larger systems, but
may not hold for small programs that have bugs (in which case one might be able to
predict the failures). Hence, reliability modeling is more meaningful for larger systems
(In [120] it is suggested that it should be applied to systems larger than 5000 LOC, as
such systems will provide enough data points to do statistical analysis.)

Let X be the random variable that represents the life of a system. Reliability of a
system is the probability that the system has not failed by time t. In other words,

Rity = PLX = 1),

The reliability of a system can also be specified as the mean time to failure (MTTF).
MTTF represents the expected lifetime of the system. From the reliability function, it
can be obtained as [140]:

MITF = / R,

S

Note that one can obtain the MTTF from the reliability function but the reverse is
not always true. The reliability function can, however, be obtained from the MTTF if
the failure process is assumed to be Poisson, that is, the life time has an ezponential
distribution [140]. With exponential distribution, if the failure rate of the system is
known as A, the MTTF is equal to 1/A.

Reliability can also be defined in terms of the number of failures experienced by the
system by time t. Clearly, this number will also be random as failures are random. With
this random variable, we define the failure intensity A(t) of the system as the number of

456 CHAPTER 10. TESTING

expected failures per unit time at time ¢t. With failure intensity, the number of failures
that will occur between ¢ and ¢t + At can be approximated as A(t)At.

Let us define what is meant by time in these reliability models. There are three
common definitions of time for software reliability models [120}: execution time, calendar
time, and clock time. Ezecution time is the actual CPU time the software takes during
its execution. Calendar time is the regular time we use, and clock time is the actua) clock
time that elapses while the software is executing (i.e., it includes the time the software
waits in the system). Different models have used different time definitions, though the
most commonly used are execution time and calendar time. It is now believed that
execution time models are better and more accurate than calendar time models, as they
more accurately capture the “stress” on the software due to execution.

Though faults are the cause of failures, the failure of software also depends criti-
cally on the environment in which it is executing [120]. It is well known that software
frequently fails only if some types of inputs are given. In other words, if software has
faults, only some types of input will exercise that fault to affect failures. Hence, how
often these inputs cause failures during execution will decide how often the software
fails. The operational profile of software captures the relative probability of different
types of inputs being given to the software during its execution. As the definition of
reliability is based on failures, which in turn depends on the nature of inputs, reliability
is clearly dependent on the operational profile of the software. Hence, when we say that
the reliability of software is R(t), it assumes that this is for some operational profile.
If the operational profile changes dramatically, then we will need to either recompute
R(t) or recalibrate it.

10.6.2 A Reliability Model

Let us now discuss one particular reliability model—Musa’s basic execution time model.
The description given here of the model is based on [120]. This is an execution time
model, that is, the time taken during modeling is the actual CPU execution time of the
software being modeled. The model is simple to understand and apply.

The model focuses on failure intensity while modeling reliability. It assumes that
the failure intensity decreases with time, that is, as (execution) time increases, the
failure intensity decreases. This assumption is generally true as the following is assumed
about the software testing activity, during which data is being collected: during testing,
if a failure is observed, the fault that caused that failure is detected and the fault is
removed. Consequently, the failure intensity decreases. Most other models make similar
assumption which is consistent with actual observations.

In this model, it is assumed that each failure causes the same amount of decrement
in the failure intensity. That is, the failure intensity decreases with a constant rate with
the number of failures. That is, the failure intensity (number of failures per unit time)

10.6. METRICS—RELIABILITY ESTIMATION 457

as a function of the number of failures is given as

M) = Aol — 25y,
Il
where g is the initial failure intensity at the start of execution (i.e., at time ¢t = 0), p
is the expected number of failures by the given time ¢, and 1y is the total number of
failures that would occur in infinite time. The total number of failures in infinite time is
finite as it is assumed that on each failure, the fault in the software is removed. As the
total number of faults in a given software whose reliability is being modeled is finite,
this implies that the number of failures is finite. The failure intensity, as a function of
the total number of failures experienced, is shown in Figure 10 [120].

Ao

Failure Intensity, A

Vo
Total Failures

Figure 10.14: Failure intensity function.

The linear decrease in failure intensity as the number of failures observed increases
is an assumption that is likely to hold for software for which the operational profile is
uniform. That is, for software where the operational profile is such that any valid input
is more or less equally likely, the assumption that the failure intensity decreases linearly
generally holds. The intuitive rationale is that if the operational profile is uniform,
any failure can occur at any time and all failures will have the same impact in failure
intensity reduction. If the operational profile is not uniform, the failure intensity curves
are ones whose slope decreases with the number of failures (i.e., each additional failure
contributes less to the reduction in failure intensity). In such a situation the logarithmic
model is better suited.

Note that the failure intensity decreases due to the nature of the software develop-
ment process, in particular system testing, the activity in which reliability modeling is
applied. Specifically, when a failure is detected during testing, the fault that caused the
failure is identified and removed. It is removal of the fault that reduces the failure in-
tensity. However, if the faults are not removed, as would be the situation if the software

458 CHAPTER 10. TESTING

was already deployed in the field (when the failures are logged or reported but the faults
are not removed), then the failure intensity would stay constant. In this situation, the
value of A would stay the same as at the last failure that resulted in fault removal, and
the reliability will be given by R(t) = e~*", where 7 is the execution time.

The expected number of failures as a function of execution time 7 (i-e., expected
number of failures by time 7), u(7), in the model is assumed to have an exponential
distribution. That is,

/’(T) = 1/“(1 — (‘_/\“!’l’u*")-

By substituting this value in the equation for X given earlier, we get the failure intensity
as a function of time:
/\\(T‘) = ,\() *f A T .

A typical shape of the failure intensity as it varies with time is shown in Figure 10 [120].

Failure Intensity, A

Execution Time 1

Figure 10.15: Failure intensity with time.

This reliability model has two parameters whose values are needed to predict the
reliability of given software. These are the initial failure intensity Ao and the total
number of failures 1. Unless the value of these are known, the model cannot be applied
to predict the reliability of software. Most software reliability models are like this; they
frequently will have a few parameters whose values are needed to apply the model.

It would be very convenient if these parameters had constant values for all software
systems or if they varied in a manner that their values for a particular software can be
determined easily based on some clearly identified and easily obtained characteristic of
the software (e.g., size or complexity). Some speculations have been made regarding
how these parameters may depend on software characteristics. However, no such simple
method is currently available that is dependable. The method that is currently used
for all software reliability models is to estimate the value of these parameters for the

10.6. METRICS—RELIABILITY ESTIMATION 459

particular software being modeled through the failure data for that software itself. In
other words, the failure data of the software being modeled is used to obtain the value
of these parameters. Some statistical methods are used for this, which we will discuss
shortly.

The consequence of this fact is that, in general, for reliability modeling, the behavior
of the software system is carefully observed during system testing and data of failures
observed during testing is collected up to some time 7. Then statistical methods are
applied to this collected data to obtain the value of these parameters. Once the values
of the parameters are known, the reliability (in terms of failure intensity) of the software
can be predicted. As statistical methods require that “enough” data points be available
before accurate estimation of the parameters can be done, this implies that reliability
can be estimated only after sufficient data has been collected. The requirement that
there be a reasonably large failure data set before the parameters can be estimated
is another reason reliability models cannot effectively be applied to software that is
small in size (as it will not provide enough failure data points). Another consequence
of this approach is that we can never determine the values of the parameters precisely.
They will only be estimates, and there will always be some uncertainty with the values
we compute. This uncertainty results in corresponding uncertainty in the reliability
estimates computed using the models.

Let us assume that the failure data collection begins with system testing (as is
usually the case). That is, time 7 = 0 is taken to be the commencement of system
testing. The selection of the start of time is somewhat arbitrary. However, selecting the
start of time where the assumptions about randomness and operational profile may not
hold will cause the model to give incorrect estimates. This is why data of unit testing
or integration testing, where the whole system is not being tested, is not considered.
System testing, in which the entire system is being tested, is really the earliest point
from where the data can be collected.

This model can be applied to compute some other values of interest that can help
decide if enough testing has been done or how much more testing needs to be done to
achieve a target reliability. Suppose the target reliability is specified in terms of desired
failure intensity, Ar. Let the present failure intensity be Ap. Then the number of failures
that we can expect to observe before the software achieves the desired reliability can be
computed by computing Ap — Ap, which gives,

Y

;\/i = (,\]) - /\/\

A
In other words, at any time we can now clearly say how many more failures we need to
observe (and correct) before the software will achieve the target reliability. Similarly,
we can compute the additional time that needs to be spent before the target reliability

is achieved. This is given by

1K) /\/)
At = —ln—.
,\(] /\[

460 CHAPTER 10. TESTING

That is, we can expect that the software needs to be executed for At more time before
we will observe enough failures (and remove the faults corresponding to them) to reach
the target reliability. This time can be converted to calendar time, which is what is
used in projects, by incorporating some parameters about the software development
environment. This issue will be discussed later.

10.6.3 Failure Data and Parameter Estimation

To apply the reliability model for a particular software, we need to obtain the value of
the two parameters: Ao and vg. These parameters are not the same for all software and
have to be estimated for the software being modeled using statistical techniques.

For statistical approaches to parameter estimation, data has to be collected about the
failures of the software being modeled. Generally, the earliest point to start collecting
data for reliability estimation is the start of system testing (a later point can also be
taken, though it will reduce the number of failures that can be observed). The data
can be collected in two different forms. The first form is to record the failure times (in
execution time) of the failures observed during execution. This data will essentially be
a sequence of (execution) times representing the first, second, and so on failures that
are observed. The second form of data is to record the number of failures observed
during execution in different time intervals (called grouped failure data). This form
might sometimes be easier to collect if the unit is a clearly identified unit, like a day.
In this form, the data will be in the form of a table, where the duration of the interval
(in execution time) and the number of failures observed during that interval are given.
We will only discuss the parameter estimation with the first form. For further details
on parameter estimation, the reader is referred to [120].

There are many ways in which the model can be “fitted” to the data points to obtain
the parameters or coefficients. One common method is the least squares approach in
which the goal is to select the parameters for the model so that the square of the
difference between the observed value and the one predicted by the model is minimized.
This approach works well when the size of the data set is not very large.

For applying the least squares approach, we will consider the equation for the failure
intensity as a function of the mean number of failures (i.e., Ap) = 2o(1 = p/w)). To
determine parameters for this equation, we need a set of observed data points, each
containing the value of the dependent variable and the value of the independent variable.
In this case, this means that we need data points, each of which gives the failure intensity
and the number of failures.

The data collected, as specified earlier, may be in the form of failure times or grouped
failure data. The first thing that needs to be done is to convert the data to the desired
form by determining the failure intensity for each failure. If the data about failure times
is available, this conversion is done as follows [120]. Let the observation interval be (0, t]
(te is the time when the observations are stopped; it will generally be greater than the
time of the last failure). We partition this observation interval at every kth failure

10.6. METRICS—RELIABILITY ESTIMATION 461

occurrence. That is, this time interval is partitioned into sub-intervals, each (except the
last one) containing k distinct failures. If the total number of failures observed until ¢,
is me, then the number of subintervals is p, where p = [me/k]. The observed failure
intensity for an interval can now be computed by dividing the number of failures in that
interval by the duration of the interval. That is, for an interval [, the observed failure
intensity r; is given by
ry = I d=1...p—-1
fit = Ty

For the last interval, the failure intensity is

me — k(p—1)

ry = .

These failure intensities are independent of each other as the different time intervals are
disjoint. The estimate for the mean value for the lth interval, my, can be obtained by

myp = M- 1.

(This takes the start value for the interval but has been found to be better than taking
the average or midpoint value [120].) In this method, if k is chosen to be too small,
large variations will occur in failure intensity. If the value of k is very large, too much
smoothing may occur. A value of about five (i.e., k = 5) gives reasonable results [120].

Obtaining data in this form from grouped data is even easier. For each time interval
for which failures were counted, dividing the number of failures by the duration of the
interval will give the failure intensity of that interval. The total number of failures for
an interval is the sum of all the failures of all the intervals before this interval.

In this manner, we can get from the collected data a set of p data points, each giving
a failure intensity and the total number of failures observed. As the relationship between
them is linear, a regression line can be fit in these data points. From the coefficients of
the line, model parameters can be determined easily.

However, the approach of simple linear regression minimizes the sum of absolute
errors (between the predicted value by the model and the actual value observed). This
approach gives a higher weight to the data points with larger failure intensity. In
other words, the coefficients will be influenced more by data points with larger failure
intensity. A better approach is to consider relative error, which is absolute error divided
by the value given by the model. The least squares approach here will be to minimize
the sum of all the relative errors. With relative errors, each data point is given the
same weight. However, with this, linear regression cannot be used, and closed-form
equations for determining the coefficients are not available. For this approach, numerical
methods must be used to determine the coefficients. The approach will be to obtain the
derivatives of the equation for least squares (with relative error) with the two coefficients
to be determined, set these to 0, and then solve these two simultaneous equations

462 CHAPTER 10. TESTING

through some standard numerical technique like the Newton-Raphson method. For
further discussion on this, the reader is referred to [120] or any numerical analysis text.

Once the parameters are known, we can also predict the number of faults in the
delivered software using the reliability model (which can be used to predict faults per
KLOC). As we don’t otherwise know how many faults remain in software, generally,
this data is available for a project only after the software has been in operation for a
few years and most of its faults have been identified. By using the reliability model, we
can predict this with some confidence.

The total failures experienced in infinity time by a software is related to the total
faults in the system, as we are assuming that faults are generally removed after a failure
is detected. However, the fault removal process may not be perfect and may introduce
errors. In addition, each failure may not actually result in removing of a fault, as the
information obtained on failure may not be sufficient for fault detection. If the total
number of faults in the software is wg, we can get v from this by using the fault reduction
factor, B:

()

B

The fault reduction factor, B, is the ratio of the net fault reduction to the total number
of failures experienced. If each failure resulted in exactly one fault being removed, then
B would be 1. However, sometimes a failure is not sufficient to locate a fault or a
fault removal adds some faults. Due to these, the fault reduction factor is not always
1. Currently available data suggests that B is close to 1, with an average value of
about 0.95 [120]. This value can be used to predict the number of faults that remain
in the software. Alternatively, the value of B can be computed from the data collected
(additional data about fault correction will have to be compiled).

My =

10.6.4 Translating to Calendar Time

The model discussed here is an execution-time model: all the times are the CPU execu-
tion time of the software. However, software development and project planning works in
calendar time—hours, days, months, etc. Hence, we would like to convert the estimates
to calendar time, particularly when we are trying to predict the amount of time still
needed to achieve the desired reliability. In this case, it is clearly desirable to specify
the time in calendar time, so that the project plan can be modified appropriately, if
needed.

. As reliability modeling is performed from system testing onward, the execution time
can be related to the effort for testing, debugging, etc. The simplest way to do this
is to determine an average ratio of the amount of effort to execution time and then to
use this effort to estimate the calendar time. Alternatively, instead of giving one ratio,
two ratios can be specified—one for the CPU time expended and one for the failures
detected. These ratios can then be used to determine the total amount of effort.

10.6. METRICS—RELIABILITY ESTIMATION 463

Let us explain this approach with a simple example. Generally, the main resource
during testing is the test team effort. For now, we consider this as the only resource
of interest for modeling calendar time. Suppose the test team runs the software for 10
CPU hours, during which it detects 25 failures. Suppose that for each hour of CPU
execution time, an average of 8 person-hours of the test team are consumed (ratio of
effort to CPU time), and that on an average 4 person-hours is needed on each failure
to analyze it (ratio of effort to failures). Hence, the total effort required for this is

10 % & + 20 % 4 = 180 person-hours.

If the quantity of test team resources (i.e., the number of members in the test team) is
three persons, this means that the calendar time for this is 60 hours. As the number
of failures experienced is a function of time according to the Basic model, one overall
ratio could also have been given with CPU time (or with number of failures). In this
example, the overall ratio will be 18 person-hours per CPU hour.

10.6.5 An Example

Let us illustrate the use of the reliability model discussed earlier through the use of
an example. In [120], times for more than 130 failures for a real system called T1 are
given. For illustration purposes, we select about 50 data points from it, starting from
after about 2000 CPU sec have elapsed (from the 21st failure). We define 7 = 0 after
the first 2000 sec of [120] to illustrate that the choice of 7 = 0 is up to the reliability
estimator and to eliminate the first few data points, which are likely to show a wider
variation, as they probably represent the start of testing. The times of failures with this
7 = 0 are given in Table 10 [120].

As we can see, this is the failure times data. From this, using k = 5, we obtain the
failure intensities and the cumulative failures as discussed earlier. The data points we
get are:

(0.0045, 0), (0.0026, 5), (0.0182, 10), (0.0047, 15), (0.0040, 20),
(0.0020, 25), (0.0056, 30), (0.0032, 35), (0.0023, 40), (0.0035, 45)

For the purposes of this example, we will try to fit a regression line to this data using
the regular least squares approach, for which parameter determination can be done
in a simple manner. As discussed earlier, this method is likely to give poorer results
compared to minimizing the square of relative errors. Using the regular regression line
fitting approach, we get Ao = 0.0074 failure/CPU sec and vg = 70 failures. (If the
complete data from [120] is used, then vy comes out to about 136 failures. Because we
are not counting the first 20, this means that by fitting a line on the complete data
using the relative error approach, vy would come out to be around 110. This error
in our estimate is coming due to the smaller sample and the use of absolute error for
determining the coefficients.) By the reliability model, the current reliability of the
software (after 50 failures have been observed) is about 0.002 failure per CPU second.

464 CHAPTER 10. TESTING

Time of Failure (in CPU sec)
311 3089 5922 10,559 14,358
366 3565 6738 10,559 15,168
608 3623 8089 10,791
676 4080 8237 11,121
1098 4380 8258 11,486
1278 4477 8491 12,708
1288 4740 8625 13,251
2434 5192 8982 13,261
3034 5447 9175 13,277
3049 5644 9411 13,806
3085 5837 9442 14,185
3089 5843 9811 14,229

Table 10.5: Failure data for a real syvstem.

We can see that the total number of estimated faults in the system at the start of
the time is 70. Out of this, 50 faults have been removed (after observing the 50 failures).
Hence, there are still 20 faults left in the software. Suppose the size of the final software
was 20,000 LOC. If the failure data given earlier is until the end of system testing (i.e.,
the software is to be delivered after this) and this software development project is a
typical project for the process that was followed, we can say that the capability of this
process is to deliver software with a fault density of 1.0 per KLOC.

Now let’s suppose the current failure intensity after 50 failures is not acceptable to
the client. The desired failure intensity is 0.001 failure per CPU second. Using the
model, we can say that to achieve this reliability, further testing needs to be done and
the amount of CPU time that will be consumed in this extra testing can be estimated
to be

70/0.0074 = 1(0.002/0.001) = 6,527 CPU - sec.

That is, approximately 1.81 CPU hours of testing needs to be performed to achieve the
target reliability. Suppose the limiting resource is only the testing personnel, there is
one person assigned to test this software, and on an average 20 person-hours of testing
personnel effort is spent for each hour of CPU time. In this case, we can say that more
than 36 person-hours of testing need to be done. In other words, the calendar time
needed to achieve the target reliability is about a week.

10.7. SUMMARY 465

10.7 Summary

Testing plays a critical role in quality assurance for software. Due to the limitations
of the verification methods for the previous phases, design and requirement faults also
appear in the code. Testing is used to detect these errors, in addition to the errors
introduced during the coding phase.

Testing is a dynamic method for verification and validation, where the system to

be tested is executed and the behavior of the system is observed. Due to this, testing
observes the failures of the system, from which the presence of faults can be deduced.
However, separate activities have to be performed to identify the faults (and then remove
them).
» There are two approaches to testing: black-box and white-box. In black-box testing,
the internal logic of the system under testing is not considered and the test cases are
decided from the specifications or the requirements. It is often called functional testing.
Equivalence class partitioning, boundary value analysis, and cause-effect graphing are
examples of methods for selecting test cases for black-box testing. State-based testing
is another approach in which the system is modeled as a state machine and then this
model is used to select test cases using some transition or path based coverage criteria.
State-based testing can also be viewed as grey-box testing in that it often requires more
information than just the requirements.

In white-box testing, the test cases are decided entirely on the internal logic of the
program or module being tested. The external specifications are not considered. Often
a criterion is specified, but the procedure for selecting test cases is left to the tester. The
most common control flow-based criteria are statement coverage and branch coverage,
and the common data flow-based criteria are all-defs and all-uses. Mutation testing is
another approach for white-box testing that creates mutants of the original program by
changing the original program. The testing criterion is to kill all the mutants by having
the mutant generate a different output from the original program.

As the goal of testing is to detect any errors in the programs, different levels of
testing are often used. Unit testing is used to test a module or a small collection of
modules and the focus is on detecting coding errors in modules. During integration
testing, modules are combined into subsystems, which are then tested. The goal here is
to test the system design. In system testing and acceptance testing, the entire system
is tested. The goal here is to test the system against the requirements, and to test
the requirements themselves. White-box testing can be used for unit testing, while at
higher levels mostly black-box testing is used.

The testing process usually commences with a test plan, which is the basic document
guiding the entire testing of the software. It specifies the levels of testing and the units
that need to be tested. For each of the different units, first the test cases are specified

466 CHAPTER 10. TESTING

and then they are reviewed. During the test case execution phase, the test cases are
executed, and various reports are produced for evaluating testing. The main outputs of
the execution phase are the test summary report and the error report.

“The main metric of interest during testing is the reliability of the software under
testing. Reliability of software depends on the faults in the software. To assess the
reliability of software, reliability models are needed. To use a model for a given software
system, data is needed about the software that can be used in the model to estimate
the reliability of the software. Most reliability models are based on the data obtained
during the system and acceptance testing. Data about time between failures observed
during testing are used by these models to estimate the reliability of the software. We
discussed one such reliability model in the chapter in some detail and have discussed
how the reliability model can be used in a project and what the limitations of reliability
models are.

Exercises

1. What are the different levels of testing and the goals of the different levels? For each level,
specify which of the testing approaches is most suitable.

2. Testing, including debugging and fixing of bugs, is the most expensive task in a project.
List the major activities in the entire testing process, and give your view on what % of
the testing effort each consumes. '

3. Suppose a software has three inputs, each having a defined valid range. How many test
cases will you need to test all the boundary values?

4. For boundary value analysis, if the strategy for generating test cases is to consider all
possible combinations for the different values, what will be the set of test cases for a
software that has three inputs X, Y, and 727

5. Take three variables A, B, and C, each having two values. Generate a set of test cases
that will exercise all pairs.

6. Suppose a software has five different configuration variables that are set independently. If
three of them are binary (have two possible values), and the rest have three values. how
many test cases will be needed if pair-wise testing method is used?

7. Consider a vending machine that takes quarters and when it has received two quarters,
gives a can of soda. Develop a state model of this system, and then generate sets of test
cases for the various criteria.

%. Suppose you have to test a class for implementing a queue of integers. Using state-based
approach (and one criteria for it). generate a set of test cases that you will use to test it.
Assume standard operations like add, delete on the queue.

——— et

10.7. SUMMARY

9. Consider a simple text formatter problem. Given a text consisting of words separ
blanks (BL) or newline (NL) characters, the text formatter has to covert it into lines,
that no line has more than MAXPOS characters, breaks between lines occurs at BL or

NL, and the maximum possible number of words are in each line. The following program

has been written for this text formatter (73]:

alarm := false;

bufpos := 0;
fill := 05
repeat
inchar(c);
if (c = BL) or (c = NL) or (c = EOF)
then
if bufpos !=0
then begin
if (fill + bufpos < MAXPOS) and (fill != 0)
then begin
outchar(BL);
gl ;= fill + 13 end
else begin
outchar(NL);
fll := 0; end;
for k:=1 to bufpos do
outchar(buffer(k]);

fll := fill + bufpos;
bufpos := 0; end
else

if bufpos = MAXPOS

then alarm := true

else begin
bufpos := bufpos + 1;
buffer[bufpos] := ¢; end

until alarm or (¢ = EOF);

For this program, do the following:

(a) Select a set of test cases using the black-box testing approach. Use as many tech-
niques as possible and select test cases for special cases using the “error guessing”

method.
(b) Select a set of test cases that will provide 100% branch coverage.

(c) Select a set of test cases that will satisfy the all-defs and the all-uses criteria (except

the ones that are not feasible).

d) Create a few mutants by simple transformations. Then select a set of test cases that

will kill these mutants.

(e) Suppose that this program is written as a procedure. Write a driver for testing this
procedure with the test cases selected in (a) and (b). Clearly specify the format of

the test cases and how they are used by the driver.

468

10.

11.

13.

14.

15.

CHAPTER 10. TESTING

Suppose three numbers A, B, and C are given in ascending order representing the lengths
of the sides of a triangle. The problemn is to determine the type of the triangle (whether it
Is isosceles, equilateral, right, obtuse, or acute). Consider the following program written
for this problem:

read(a, b, c);

if (a < b) or (b < c) then
print(”Illegal inputs”);
return;

if (a=b) or (b=c) then
if (a=b) and (b=c) then print(”equilateral triangle”)
else print(”isosceles triangle”)

else begin
a:= a*a; b := b*b; ¢ := c*c;
d := b+c;
if (a = d) then print("right triangle”)
else if (a<d) then print(”acute triangle”)
else print(”obtuse triangle”);

end;

For this programn, perform the same exercises as inu the previous problem.

What are the limitations of the reliability model discussed in the chapter for using it for
estimating the reliability of a product?

. Suppose you want to predict the reliability of a product at the time of the release using

the model discussed in the chapter. What data will you collect and when for this. and
what changes (if any) will vou make in your testing?

Define some data flow criteria for testing an entire class (i.e., not just for testing the
methods independently) (refer to [82]).

In your next project, collect the defects in the last stages of testing. Perform the cause-
effect analysis for these defects leading to some actions on how vou should do things
differently in the future for reducing the errors vou make.

Another method for evaluating software reliability is to use the Mill’s seeding approach. In
this method some faults are seeded in the program, and reliability is assessed based on how
many of these seeded faults are detected during testing. Develop a simple reliability model
based on this approach. Define your parameters, and give a formula for estimating the
reliability and the number of faults remaining in the system. Also discuss the drawbacks
and limitations of this model?

CASE STUDIES 469

Case Studies

Here we briefly discuss the test plans and strategy for the two case studies. The detailed
test case specifications for system testing are available from the Web site.

Test Plan for Case Study 1 (Course Scheduling)

This document describes the plan for testing the course scheduling software. All ma-
jor testing activities are specified here; additional testing may be scheduled later, if
necessary.

1. Test Units

In this project we will perform two levels of testing: unit testing and system testing.
Because the system is small, it is felt that there is no need for elaborate integration
testing. The basic units to be tested are:

Modules to input file-1

Modules to input file-2

Modules for scheduling

In addition, some other units may be chosen for testing. The testing for these different
units will be done independently.

2. Features to be Tested
All the functional features specified in the requirements document will be tested. No
testing will be done for the performance, as the response time requirement is quite weak.
3. Approach for Testing

For unit testing, structural testing based on the branch coverage criterion will be used.
The goal is to achieve branch coverage of more than 95%. The CCOV coverage analyzer

tool will be used to determine the coverage. System testing will be largely functional
in nature. The focus is on invalid and valid cases, boundary values, and special cases.

4. Test Deliverables
The following documents are required (besides this test plan):

e Unit test report for each unit
e Test case specification for system testing
e Test report for systewn testing

e Error repont

470 CHAPTER 10. TESTING

The test case specification for system testing has to be submitted for review before
system testing commences.

5. Test Case Specifications for System Testing

For test case specifications we specify all test cases that are used for system testing.
First, the different conditions that need to be tested, along with the test cases used for
testing those conditions and the expected outputs are given. Then the data files used
for testing are given. The test cases are specified with respect to these data, files. The
test cases have been selected using the functional approach. The goal is to test the
different functional requirements, as specified in the requirements document. Test cases
have been selected for both valid and invalid inputs. The entire test case specifications
is available from from the Web site.

Case Study 2—PIMS

The test plan for PIMS is similar to the previous one. It also follows a two level testing—
unit and then system. Unit testing is performed by the programmers, and no unit test
reports are mandated. As the overall plan is the same, we do not discuss it here. We
just discuss some aspects of planning for system test cases.

System testing would begin with the development team releasing applications to the
test team. The sequence of activities is:

e Development team does a nuit testing of the application. fixes identificd problems
and hands over the environment to the Test team.

e Test team runs some quick checks (e.g.. that the svetem installs. that it can take
inputs) and some tests for critical functionality. 1f 80% of these tosts pass. then
the application is considered ready for system testing. otherwise it is returned to
the developers.

o The test team runs the test cases.

e Testing will be suspended if during testing the test team encounters auy critical
defeets. or a set of major defects which would prevent effective testing,

e The testing shall resume only when 1009 of eritical defects are fixed and at least
R0Y major defects are fixed.

o Testing shall end when all the test cases in the tesr plan have been executed.

e Defects identified will e notified to the developient team regnlarly and all defect
fixes received from the development teann will be inclnded for retesting.

CASE STUDIES 471

For this case study, the system test plan was prepared with inputs from some soft-
ware quality professionals from commercial organizations. So, in a sense, the test cases
represent the type of testing that may be done by professionals. The test case specifi-
cations are available from the Web site.

